References
Ecosystem
Additional Softwares
grid2op (https://grid2op.readthedocs.io/): core package
lightsim2grid (https://lightsim2grid.readthedocs.io/) : faster powergrid simulator
l2rpn-baselines (https://l2rpn-baselines.readthedocs.io/ ): agent code examples
energy-sdk-l2rpn (https://github.com/NVIDIA/energy-sdk-l2rpn): A Graphical User Interface (GUI) to find some interesting actions, based on simulation
grid2viz (https://github.com/rte-france/grid2viz): A GUI to inspect a posteriori the behaviour of some agents
grid2game (https://github.com/BDonnot/grid2game/ ): A GUI that allows to manually interact with an agent and to "play the game" manually
chronix2grid (https://github.com/BDonnot/ChroniX2Grid ): A software allowing to generate simulated data that can be used by grid2op (in particular)
If you developed a something related to the grid2op ecosystem, please let us know and we'll add it here.
PAPERS TO GO FURTHER - Join us!
Papers
Below is the list of accepted and submitted papers from our Apogee project Team since 2017.
It should help you have a deeper understand of the challenges we are tackling and yet the approaches we have been exploring. We hope this could give you draw some inspirations to join us make further advances in the field of AI for Smart Grids!
Most of those papers can be found on arxiv and HAL libraries.
2022 Papers
NeurIPS 2022 (RL4RealLife Workshop) : Power Grid Congestion Management via Topology Optimization with AlphaZero.
Challenge's winner in 2022. This paper presents how an DRL algorithm inspired from AlphaZero is used to tackle the congestion management in powergrid.
2021 Papers
ICLR 2021: Winning the L2RPN Challenge: Power Grid Management via Semi-Markov Afterstate Actor-Critic
The challenge's winner in 2020. This paper uses Actor-Critic methods and approximate value functions via GNNs.
PCML- NeurIPS 2020: Learning to run a Power Network Challenge: a Retrospective Analysis
The competition's description and results in 2020.
IEEE 2021: Exploring grid topology reconfiguration using a simple deep reinforcement learning approach
Simple baseline approach using RL to represent an artificial control room operator that can operate a IEEE 14-bus test case for a duration of 1 week.
A decentralized approach to the problem using multi-agent RL.
IEEE 2021: Adversarial Training for a Continuous Robustness Control Problem in Power Systems
An adversarial training approach for injecting robustness.
IEEE 2020: AI-Based Autonomous Line Flow Control via Topology Adjustment for Maximizing Time-Series ATCs
2019 L2RPN participant. Imitation learning is used to provide a good initial policy. Then, the agent is trained with DRL algorithms to improve its policy and an Early Warning (EW) mechanism is designed to help the agent find good topology control strategies for long testing periods.
2020 Papers
Neurocomputing Jounal: LEAP Nets for System Identification and Application to Power Systems
PSCC 2020: Unsupervised Graph Neural Solver for Power Flow Computation
PSCC 2020: Learning to run a power network by training topology controllers
Accepted papers 2017 -2019
IERP 2017: Introducing Machine Learning for power system operation support
ESANN 2018: Fast Power System Security Analysis with Guided Dropout
IJCNN 2018: Anticipating contingengies in power grids using fast neural net screening
ISGT Europe 2018: Optimization of computational budget for power system risk assessment
ISGT Europe 2018 & NIPS 2019 Workshop: Guided machine learning for power grid segmentation
MedPower 2018: Expert System for topological remedial action discovery in smart grids
ESANN 2019: Leap Net for power grid perturbations
IJCNN 2019: Graph Neural Solvers for Power Systems
EGC 2019: Semi-supervised labelling, Towards an Extended Expert Approch
ECML 2019: Interpreting atypical conditions in systems with conditional autoencoder
About
About RTE
Réseau de Transport d'Électricité (Electricity Transmission Network), usually known as RTE, is the electricity transmission system operator of France. It is responsible for the operation, maintenance and development of the French high-voltage transmission system, which at approximately 100,000 kilometres (62,000 mi), is Europe's largest. RTE R&D is one of the strongest in the world in the field of power grids and has many research collaboration around the world, especially in Europe and in the USA. RTE is now a member of the Linux Foundation Energy Initiative in which it open-sourced many simulators and applications.
About ChaLearn
ChaLearn is a non-profit organization with vast experience in the organization of academic challenges. ChaLearn is interested in all aspects of challenge organization, including data gathering procedures, evaluation protocols, novel challenge scenarios (e.g., competitions), training for challenge organizers, challenge analytics, result dissemination and, ultimately, advancing the state-of-the-art through challenges.