A power grid in Action
Ensuring Production and Consumption Balance at all time
Consumption varies during the day depending on human habits. Production needs to match consumption at all time to ensure a proper balance between offer and demand. How and where the energy is produced can vary as well along the day, adding some complexity to power grid operations.
For more information and interactive navigation through historical days of consumption, you can visit RTE ECO2MIX website.
French Electrical Consumption over a day
French Electrical Production and Energy mix
Operating the grid to safely transport electricity
A power grid has to transport electricity safely from productions to consumptions over the course of the day. Hour after hour, operators tries to minimize energy losses through the grid while making sure no power line is overloaded. Otherwise, lines will get disconnected for safety reasons. This can trigger a possible snow ball effect which can effectively lead to a Blackout!
Here is an example of a power grid in action over time with no human intervention. After some iterations, some lines begin to be overloaded. Few time steps, later they get disconnected. After few additional iterations, more lines are disconnected, eventually leading to a blackout where productions cannot supply consumptions anymore.
Operating your first power grid interactively
Previsouly you saw what the role of power grid is and what can badly happen to a power grid when operated. Let's now see what you can do to operate the grid and avoid or solve those dangerous situations.
The University of Illinois has created a simple educational interactive power grid applet to understand how a power grid works and how you can operate it. You can complete the 5 short challenges that are given to deepen your understanding on power grid operations.
Note that the less costly operation to redispatch the power flows in real life is to change the topology of the grid by opening or closing switches, whereas changing productions are costly. Subsations can be seen as the articulation joints of the power grid body. To best operate the grid and let the electricity flows smoothly, you need to coordinate those articulations, similar to learning to run challenge. The goal of the challenge is to find the best topologies configuration over time to manage the power flows while insuring the system stability.