Real-World Issues

Power grids for a sustainable world

Electrification has played a prominent role in the development of modern societies in the past century. Some institutions such as the National Academy of Engineering acknowledge it as the number one engineering achievement of the 20th century ( . Electricity has now become a commodity, and power grids transporting electricity across states, countries, and continents are essential components of modern societies. Such grids play a central economical and societal role by supplying reliable power to industry, services, and consumers. Electrical transmission is not a simple task, however, and requires 24/7 monitoring and control of the grid to avoid electricity blackouts, which can lead to significant losses and delay in public services and strategic industries. Grid operators are skilled engineers, in charge of ensuring that a reliable supply of electricity is provided everywhere and at all times. As surprising as it may be, their task is becoming increasingly difficult in the digital era because efforts made to automate operation are insufficient and they have to constantly examine massive amounts of data in real-time. In the face of a resurgence of blackouts in modern but aging grids (California, New York, Australia, The UK in 2019), the development of new tools are becoming urgent to keep operating robust grids. Electricity should be a reliable commodity, especially for those in less densely populated areas with more difficult access to public services.

Power systems are in some sense archaic, but are very complex. They can be considered as somewhat ``artificially intelligent'' systems currently in operation, and they are in great need of 21st century innovation to manage the increasingly complex task of satisfying electricity demand, all while using renewable energies and opening market exchanges. Renewable sources such as wind and solar are intermittent sources of energy due to their dependence on meteorological conditions. Also, while providing opportunities for exchange, electricity markets bring in their own variability and uncertainties in the system. As with most national power grid operators, the French national grid operator, Réseau de Transport d’Électricité (RTE), is undergoing rapid and profound changes under a steep energy transition. This places new flexibility and reactivity requirements on the smart grids of the future. Adaptability is key for the power grid to fully reach its potential in mitigating climate change by allowing for total de-carbonization of our energy system, doing this under a sustainable approach with as little new infrastructure footprint as possible.

Robustness in power grids

A power system can be damaged as a result of many different causes such as storms, lightning, heat or cold, vandalism, cyberattacks, human error). Often, this leads to power lines being out of service for few hours or days. Nevertheless, even with the loss of some power lines, the system should still operate properly to ensure the proper transportation of electricity, especially when it is sometimes most needed after a storm. Hence, we need a resilient power system. In particular, it should be robust for the loss of any lines at any moment.

20 years ago in december 1999, while we were all afraid of the 2000's bug in every computer, the problem didn't come as a digital bug in France but rather from a natural phenomena as 2 successive giant storms within 2 days!

Many towers were dramatically torn apart, many power lines were out of service, as you can see below. But the teams managed to still operate the power grid as they were prepared for a harmful event. Even if some households did not get electricity for few days, the grid was surprisingly quick to recover from such an event: it was resilient.

We should not forget to take into account nowadays this key property of well designed, maintained and operated power grids.

A power grid tower torn apart in 1999 in France after 2 big storms in 2 days

Visualize the state of the grid before and after the storms. Even it was quite damaged, we still managed to operate it thanks to resiliency.

More info on the webpage

A new challenge in 2020 will address part of this real-world important issue for critical power systems

Adaptability in power grids

Towards a Great Share of Renewable Energy

In the future, a greater share of renewable energy, that is wind and solar power, will help us transition toward a more sustainable world with fewer green house gas emissions. This however comes with new challenges to still ensure the reliable delivery of electricity to society 24/7. Most countries have aggressive targets for the reduction of CO2 emissions from electricity, transport and heating systems. In the electricity industry most countries are targeting complete decarbonization of their power systems before 2050 and the UK is planning to reach this goal by 2025. Operating a power grid to meet these aggressive targets in the future will be challenging and is one of the main reasons why this challenge is so important.

Even today's power plant production mainly has to follow the demand with a risk of not meeting the peak demand,a phenomenon called underproduction.

But tomorrow they will need to meet the net demand (demand minus renewable production). While demand is quite predictable today, the net demand will be more uncertain given the high variability of wind. In addition, solar power only produces during daily hours and induces a now well-known duck curve in net demand, introducing new dips and peaks in the net demand curve, with a new risk of overproduction. Faster power plants and more flexibilities will be needed to adapt and effectively continue operating the grid.

Duck Curve Explained and the need to adapt the power grid with upcoming challenges. Original duck chart for more information.

Considering Climate Change impact

Climate attributable reductions to transmission capacity by decade (from top left to bottom right: 2020, 2040, 2060, 2080). Colors indicate the percent reduction in transmission capacity under the average RCP 4.5 scenario, relative to the 1990–2010 reference period. For additional information see "Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States" here.

Powering the next 100 years - John Platt keynote at NeurIPS 2017

John Platt from Google explain very clearly as well the challenge of integrating more renewable. While he deems them as a necessary component, he demonstrates that we cannot rely only on renewables to reliably deliver the amount of energy we need. A complementary component needs to compensate for their intermittency and lower reliability. Otherwise, this may create a lot of over capacity installed of wind farms and solar panels coming with a huge footprint to produce them. He further advocates that fusion energy is the right research avenue to pursue to succeed in our sustainable energy transition. While this is not the only potential solution, this is one more example showing that the grid will have to adapt in the future.

To Summarize

The power grid is an extremely complex human built machine that must maintain reliability 24 hours a day 7 days a week to reliably serve domestic, commercial and industrial customers with energy. While network operators have done a great job for over 100 years in maintaining reliability, the coming years will pose significant challenges for grid operators. The move to decarbonize electricity networks, and society more generally, will mean radical alterations to how grids are operated in real time. This is because renewable generation is intermittent and consumer energy habits will change over time as homes and businesses utilize smart devices. New tools and techniques will be needed to operate the future power grid, the challenge aims to introduce power grid operation to the wider ML/RL community, to utilize their expertise and to allow them to solve a complex issue that will benefit all of society.

To be completed

  • French scenarios

  • Less grid development